dRICH details for YR

15/Apr/2020 PID-YR meeting

E. Cisbani, Marco Contalbrigo, Roberto Preghenella largely based on Alessio del Dotto work

Considerations

(from previous meetings and further discussions)

- For each detector we need models that provide estimation of performance, based on:
 - Semi-analytic parameterization (for fast evaluation)
 - realistic Montecarlo simulation (for detailed assessment)
- Each model shall report all assumptions behind it;
- The comparison of different EIC-spectrometer configurations (or part of them) requires:
 - consistent underlying assumptions of the different detector models,
 - similar level of feasibility,
 - equivalent model reliability
- We should consider different scenarios (possibly 2) for each proposed EIC configuration ranging between (they may overlap):
 - State of the art: assumptions rely as much as possible on what today can be considered achiveable based on experimental data and literature;
 - Optimal EIC: assumptions are "free", likely unavailable today but expected to be reasonably feasible for the EIC era after dedicated R&D
- For each proposed detector, we should list risks/mitigations

dRICH - Software Status

Montecarlo (GEMC/Geant4)

- Cherenkov angle reconstruction by Inverse Raytracing Method (no uncertainty in detector geometry)
- Source code: github.com/EIC-eRD11/dualRICH_inMEIC

Parameterized Model

→ Roberto Slides

PID reconstruction (beta) of MC data

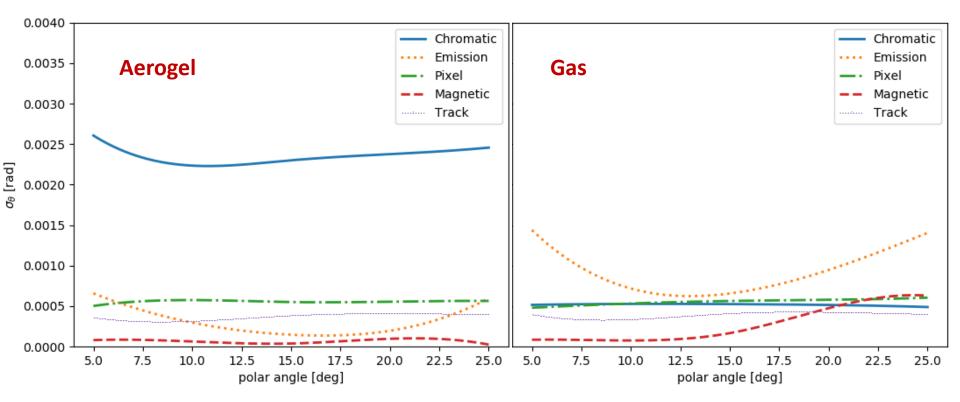
- Event based reconstruction
- Provide confusion/Migration matrix (tested on PYTHIA DIS events)

Al-driven Optimization (original idea by C. Fanelli)

- Use Montacarlo model and an efficient maximization strategy of a figure of merit (e.g. for dRICH: combinations of $n\sigma$'s in different momentum regions)
- Flexible tool, can be ported to different detectors and combination of them!

dRICH - MC External Assumptions

Tracking			
Angular resolution	σ = 0.5 mrad (1 mm over 2 m) – whole momentum range		
Impact point resolution	σ = 0.3 mm		
Momentum resolution dP/P	+/- few percent negligible effects in Cherenkov angle reconstruction		
Magnetic Field	3 Tesla Central Field in JL-MEIC spectrometer		
Space Requirement	(based on original spectrometer constraints)		
longitudinal length	JLEIC: ≈1.6 m, ePHENIX: ≈1.0 m		
transverse radius	JLEIC: ≈2.5 m, ePHENIX: ≈2 m		
beam pipe radius	<10 cm		
Background	no direct external background only backrground produced by the simulated charged particle: Delta rays, Rayleigh scattering		


dRICH - MC Internal Assumptions

Aerogel radiator	n=1.02, 4 cm Characteristics scaled from CLAS12/RICH measurements			
Gas radiator	n=1.0008, 160/100 cm - C2F6 yield scaled from CF4 data (x0.7); chromaticity from literature (NIMA 354(1995)417); constant absorption length			
Mirror	Reflectivity from CLAS12/RICH measurement; Roughness not included			
Photon Detector	3 mm pixel size; 200-500 nm MAPMT characteristics from CLAS12 measurements			
Vessel	no thickness assumption so far			
Background				
Sensor Electronics	Random - spatially uniform on photosensor, poissonian with 30 hits/event mean (assuming 1kHz/pixel dark count x 100 ns) Note: uniform background hits do not influence noticeably the angular resolution; they influence the PID and therefore the migration matrix			
Acrylic filter	3.2 mm (from HERMES and LHCb), remove aerogel photons (Rayleigh scattering) below 300 nm impact on $\approx 1\%$ of signal photons			
Particle Generation 15/Apr/2020	All charged particles originate from the vertex and are uniformely distributed the angular phase space details for YR	l in 5		

dRICH MC Cherenkov Angle Resolution

Single Photon Cherenkov Angle Resolution

- Main contributors shown
- Charged particle momentum 30 GeV/c
- Photo sensor surface "optimized" (slightly curved)

dRICH - Pros

- 1. >3 σ π -K separation in 3 50 GeV whole range in RICH mode (Montecarlo simulation) as well as large coverage for K-p (and electron) PID
- 2. Photon detector out of acceptance and far from the beam pipe in moderate magnetic field ($\leq 1/2$ of central zone): less constraints on material budget (e.g. mechanical supports, shielding, cooling); neutron flux is also reduced
- 3. Expected to be **cheaper and more compact** (also in terms of services) than 2 (or more) detectors solution (sparing on photon detector and related electronics)
- **4. Material budget** likely smaller than 2 detector solutions: from CLAS12/RICH-LTCC: $X_0 \approx 1\%$ vessel (no pressurization) + 1% mirror + aerogel, acrylic filter and gas
- 5. Two dual radiator RICHes already operated (lesson learned)
- 6. Rather **advanced software available**: detailed Montecarlo, parameterization, full PID reconstruction, automated optimization procedure

dRICH - Cons

- 1. More demanding PID respect to single radiator RICH
- 2. LHCb dual radiator RICH1 issues: underestimation of aerogel stability in contact with freon gas? large multiplicity and relative large background?
- 3. Aerogel chromatic performances are critical and need to be well investigated in terms of stability and interference with other gases
- R&D on photo sensors needed (common to other detectors)
- Gas Procurement potential issue due to possible ecological restrictions and costs (common to other detectors)

dRICH Key Hardware Components 1/2

Component	Function	Specs/Requirements	Risk	Mitigation
Mechanics	Support all components and services; keep in position and aligned	Large volume gas and light tightness; alignment of components (1% rad length STP gas)		
Optics (Mirrors)	Focus (expecially for gas) and deflect photons out of particle acceptance and reduce sensor surface	sub-mrad precision reflectivity ≥ 90% low material budget (1% rad length from CLAS12/RICH)	Cost could be signficant if very challenging material budget required	Spherical mirrors technology of CLAS12 suitable (carbon fiber and/or glass skin); similar geometry; Development for cost reduction
Aerogel Radiator	Cover Low Mom. Range between TOF and Gas	≥3σ π-K separation up to Gas region (~13 GeV)	Long term stability performance need to stay "at top"; Procurement: currenly 1 active provider (2 producers, 1 potential)	Exploit CLAS12/RICH experience and characterization facility Production time: 4 m2/2.5 y Carry on evaluation of long term stability study Support potential new providers
Gas Radiator	Cover High Mom. Range above Aerogel	$\geq 3\sigma$ π -K separation up to ~ 50 GeV and overlap to aerogel	Greenhouse gas: potential procurement and cost issue	Search and evaluate alternatives

dRICH details for YR

dRICH Key Hardware Components 2/2

Component	Function	Specs/ Requirements	Risk	Mitigation
Photon Detector	Single photon spatial detection	Magnetic field tolerant and radiation hardness; ~ few mm spatial resolution	MCP-PMT is likely duable, but expensive. Need to find alternatives	R&D on SiPM: a promising, quicky improving, wordwide pursued, and cheap technology.
Electronics	Amplify and shape single photon analog signal, convert to digital, transfer to DAQ nodes	Low noise Time res. ~ 0.5 ns μs signal latency; High density	No major risk but need to be tailored to photon sensors	MAROC3 based readout available for prototyping; final choice will depend on sensor. ASIC development for optimised streaming readout (discrimination vs sampling)